333 research outputs found

    Elastic wave dispersion in layered media with suture joints: influence of structural hierarchy and viscoelasticity

    Get PDF
    Suture joints contribute to the exceptional combination of stiffness, strength, toughness and efficient load bearing and transmission of many biological structures like the cranium or ammonite fossil shells. However, their role in the attenuation of vibrations and effect on dynamic loads is less clear. Moreover, the self-similar hierarchical geometry often associated with suture joints renders its treatment with standard numerical approaches computationally prohibitive. To address this problem, this paper investigates the dynamic response of periodic layered media with suture joints using an analytical approach based on material homogenization. A general trapezoidal suture geometry is considered together with the fundamental ingredients of hierarchy and viscoelasticity. The Spectral Element Method and Bloch theorem are used to derive the dispersion relation and band diagram of the system, including propagating and evanescent dispersion modes. A strong influence of the suture morphology and material properties emerges, and the analysis reveals an important advantage of adding hierarchy, i.e. the possibility of simultaneously obtaining wider bandgaps and their shift to higher frequencies. A synergy between hierarchy and structure is also observed, providing superior levels of wave attenuation. These findings suggest a possible design concept for bioinspired devices with efficient and tailorable wave attenuation properties

    Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model

    Get PDF
    Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of infinitely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.Comment: 33 pages, 7 figures, 1 table in pres

    Tuning of frictional properties in torsional contact by means of disk grading

    Get PDF
    The contact of two surfaces in relative rotating motion occurs in many practical applications, from mechanical devices to human joints, displaying an intriguing interplay of effects at the onset of sliding due to the axisymmetric stress distribution. Theoretical and numerical models have been developed for some typical configurations, but work remains to be done to understand how to modify the emergent friction properties in this configuration. In this paper, we extend the two-dimensional (2D) spring-block model to investigate friction between surfaces in torsional contact. We investigate how the model describes the behavior of an elastic surface slowly rotating over a rigid substrate, comparing results with analytical calculations based on energy conservation. We show that an appropriate grading of the tribological properties of the surface can be used to avoid a non-uniform transition to sliding due to the axisymmetric configuration

    Attenuating surface gravity waves with mechanical metamaterials

    Get PDF
    4noMetamaterials and photonic/phononic crystals have been successfully developed in recent years to achieve advanced wave manipulation and control, both in electromagnetism and mechanics. However, the underlying concepts are yet to be fully applied to the field of fluid dynamics and water waves. Here, we present an example of the interaction of surface gravity waves with a mechanical metamaterial, i.e., periodic underwater oscillating resonators. In particular, we study a device composed of an array of periodic submerged harmonic oscillators whose objective is to absorb wave energy and dissipate it inside the fluid in the form of heat. The study is performed using a state-of-the-art direct numerical simulation of the Navier-Stokes equation in its two-dimensional form with free boundary and moving bodies. We use a volume of fluid interface technique for tracking the surface and an immersed boundary method for the fluid-structure interaction. We first study the interaction of a monochromatic wave with a single oscillator and then add up to four resonators coupled only fluid-mechanically. We study the efficiency of the device in terms of the total energy dissipation and find that by adding resonators, the dissipation increases in a nontrivial way. As expected, a large energy attenuation is achieved when the wave and resonators are characterized by similar frequencies. As the number of resonators is increased, the range of attenuated frequencies also increases. The concept and results presented herein are of relevance for coastal protection applications.openpartially_openembargoed_20220426De Vita F.; De Lillo F.; Bosia F.; Onorato M.De Vita, F.; De Lillo, F.; Bosia, F.; Onorato, M

    A combined experimental/numerical study on the scaling of impact strength and toughness in composite laminates for ballistic applications

    Get PDF
    In this paper, the impact behaviour of composite laminates is investigated, and their potential for ballistic protection assessed, as a function of the reinforcing materials and structure for three representative fibre-reinforced epoxy systems involving carbon, glass, and para-aramid fibre reinforcements, respectively. A multiscale coupled experimental/numerical study on the composite material properties is performed, starting from single fibre, to fibre bundles (yarns), to single composite ply, and finally at laminate level. Uniaxial tensile tests on single fibres and fibre bundles are performed, and the results are used as input for non-linear Finite Element Method (FEM) models for tensile and impact simulation on the composite laminates. Mechanical properties and energy dissipation of the single ply and multilayer laminates under quasi-static loading are preliminarily assessed starting from the mechanical properties of the constituents and subsequently verified numerically. FEM simulations of ballistic impact on multilayer armours are then performed, assessing the three different composites, showing good agreement with experimental tests in terms of impact energy absorption capabilities and deformation/failure behaviour. As result, a generalized multiscale version of the well-known Cuniff criterion is provided as a scaling law, which allows to assess the ballistic performance of laminated composites, starting from the tensile mechanical properties of the fibres and fibre bundles and their volume fraction. The presented multiscale coupled experimental- numerical characterization confirms the reliability of the predictions for full-scale laminate properties starting from the individual constituents at the single fibre scale

    The role of hairs in the adhesion of octopus suckers: a hierarchical peeling approach.

    Get PDF
    Organisms like the octopus or the clingfish are a precious source of inspiration for the design of innovative adhesive systems based on suction cups, but a complete mechanical description of their attachment process is still lacking. In this paper, we exploit the recent discovery of the presence of hairs in the acetabulum roof of octopus suction cups to revise the current model for its adhesion to the acetabulum wall. We show how this additional feature, which can be considered an example of a hierarchical structure, can lead to an increase of adhesive strength, based on the analysis of the cases of a simple tape and an axisymmetrical membrane adhering to a substrate. Using peeling theory, we discuss in both cases the influence of hierarchical structure and the resulting variation of geometry on the adhesive energy, highlighting how an increase in number of hierarchical levels contributes to its increment, with a corresponding improvement in functionality for the octopus suckers

    Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control

    Get PDF
    AOK has received funding from the European Union’s 7th Framework programme for research and innovation under the Marie Skłodowska-Curie Grant Agreement No. 609402-2020 researchers: Train to Move (T2M).MM has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 658483. NMP is supported by the European Research Council PoC grant 2015 SILKENE No. 693670, EU FETPROACTIVE grant 732344 ‘NEUROFIBRES’, and by the European Commission under the Graphene Flagship (WP14 ‘Polymer Nanocomposites’, No. 604391). FB is supported EU FETPROACTIVE grant 732344 ‘NEUROFIBRES’

    Optimization of spider web-inspired phononic crystals to achieve tailored dispersion for diverse objectives

    Get PDF
    International audienceSpider orb webs are versatile multifunctional structures with optimized mechanical properties for prey capture, but also for transmitting vibrations. The versatility of such a system mainly derives from its variable geometry, which can be effectively used to design phononic crystals, thus inhibiting wave propagation in wide frequency ranges. In this work, the design of spider web-inspired singlephase phononic crystals through selective variation of thread radii and the addition of point masses is proposed, determined through the use of optimization techniques. The obtained results show that spider web geometry displays a rich vibration spectrum, which by varying its the geometric characteristics and adding localized masses can be tailored to manipulate wave modes, and the resulting two-dimensional phononic crystals present wide complete band gaps generated by Bragg scattering and local resonances

    Evidence of friction reduction in laterally graded materials

    Get PDF
    In many biological structures, optimized mechanical properties are obtained through complex structural organization involvingmultiple constituents, functional grading and hierarchical organization. In the case of biological surfaces, the possibility to modifythe frictional and adhesive behaviour can also be achieved by exploiting a grading of the material properties. In this paper, we in-vestigate this possibility by considering the frictional sliding of elastic surfaces in the presence of a spatial variation of the Young’smodulus and the local friction coefficients. Using finite-element simulations and a two-dimensional spring-block model, we investi-gate how graded material properties affect the macroscopic frictional behaviour, in particular, static friction values and the transi-tion from static to dynamic friction. The results suggest that the graded material properties can be exploited to reduce static frictionwith respect to the corresponding non-graded material and to tune it to desired values, opening possibilities for the design of bio-inspired surfaces with tailor-made tribological propertie
    • …
    corecore